

Choosing Between Enoxaparin and Fondaparinux for the Prevention of Thromboembolism: A Meta-Analysis of Randomized Trials

Enas W. Mahdy*, Ahmed Mostafa Abd El-Hamid, Reham Mahmoud Shady, Basem Mofreh Aglan

Abstract

Background: Venous thromboembolism (VTE), are few of the most serious complications in ICU. There are Pharmacological and mechanical prophylaxis methods are used to reduce the risk of thromboembolism and the most efficient is the pharmacological methods which is based on a fine balance between their efficacy and the adverse effects associated with them.

Objectives: To evaluate, effectiveness, and clinical impact of VTE prophylaxis with fondaparinux and enoxaparin on patient outcomes in different clinical practices.

Study design: Meta-analysis was used to address this concern.

Sittings: Meta-analysis-based study following the PRISMA (Preferred Reporting Items for Systematic Reviews and MetaAnalyses) guidelines.

Methods: Online databases (PubMed/Medline, EMBASE, and Cochrane library) were used for randomized studies which compared differences in clinical outcomes observed with the use of Fondaparinux and enoxaparin in patients who were treated for thromboembolism.

Results: Thirteen studies were identified for inclusion in this study, involving a total of 64,350 patients. The risk of bias was low. Meta-analysis found that Fondaparinux result in significant reduction in incidence of bleeding than Enoxaparin (R.R. = 0.85 [0.81, 0.88]; 95% Cl; $l^2 = 100\%$; P < .00001) also showed that that Fondaparinux result in significant decrease in venous thromboembolism than enoxaparin (R.R. = 0.52 [0.47, 0.58]; 95% Cl; $l^2 = 62 + \%$; P < .00001). There was no significant difference in the incidence of mortality, pulmonary embolism, stroke, and incidence of transfusion between two groups among the studies included in the meta-analysis.

Conclusion: Fondaparinux was associated with superior efficacy in reduction of incidence of bleeding and incidence of occurrence of venous thromboembolism.

Keywords: enoxaparin, fondaparinux, meta-analysis, randomized trials, thromboembolism

1. Introduction

Critically ill patients appear to be at high risk of developing deep vein thrombosis (DVT) and pulmonary embolism during their stay in the intensive care unit (ICU) because of many factors such as premorbid medical and surgical conditions, invasive tests and treatments, prolonged immobility, vascular injury, and acute and chronic renal insufficiency.¹ In addition, critical illness activates

The Egyptian Journal of Critical Care Medicine (2022) 9:1

Received 13 October 2021; Accepted 26 November 2021; Available online 1 February 2022

http://dx.doi.org/10.1097/EJ9.000000000000038

the coagulation cascade which may mediate the increased developing of venous thromboembolism (VTE)² Prevention of arterial and venous thrombosis forms a major part of clinical practice in all medical and surgical specialties. Thrombosis prophylaxis decreases the incidence of VTE, and guidelines have suggested pharmacologic prophylaxis for all critically ill patients if there is no contraindication.^{3,4} Fondaparinux belongs to a new group of anticoagulant compounds, the synthetic oligosaccharides. It is a single chemical entity composed of five saccharides, designed specifically to bind strongly and exclusively to anti thrombin. Its structure prevents the nonspecific binding to plasma proteins and therefore, Fondaparinux is more than 95% bound to ant thrombin in plasma.⁵ Although Fondaparinux does not mediate the inhibition of coagulation factors other than Factor Xa, it inhibits thrombin generation in a dose-dependent manner whether triggered via the extrinsic or intrinsic pathway, independently of the presence of platelets.⁶

Heparin, the most used anticoagulant, especially in an ICU setting, is isolated from porcine intestine where it is stored in the mast cell granules. Unfractionated heparin (UFH) is a combination of 3000- to 30,000-Dalton (da) fragments. Heparin binds to ant thrombin III (also called ant thrombin/AT), increasing the rate of thrombin-AT complex formation, but also inhibits other

Faculty of Medicine - Benha University, Banha, Al Qalyubia Governorate, Egypt

^{*} Corresponding author: Enas Wageh Mahdy, Faculty of Medicine - Benha University, Banha, Al Qalyubia Governorate, Egypt. E-mail: ewm01221592827@gmail.com

Conflict of interests: The authors reported no conflict of interests.

Copyright © 2022 the Author(s). Published by Wolters Kluwer Health, Inc. This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

steps in coagulation.⁷ Heparin anticoagulation has major advantages in an ICU setting.

LMWHs are anticoagulants acting by inhibition of the final common pathway of the coagulation cascade.⁸ The coagulation cascade's goal is to fluid blood into a clot, thus preventing bleeding. The final common pathway is the conversion of fibrinogen into fibrin by the activity of thrombin. LMWH inhibits coagulation by activating antithrombin III. Antithrombin III binds to and inhibits factor Xa. In doing so, it prevents activation of the final common pathway. LMWH administration is via subcutaneous injection; this has long-term implications on the choice of anticoagulant for prophylaxis.⁹

LMWHs have many advantages over UFH. These agents have a greater bioavailability, can be administered by subcutaneous injections, and have a longer duration of anticoagulant effect. A fixed dose of LMWH can be used, and laboratory monitoring of aPTT is not necessary, also it decrees incidence pf heparin induced thrombocytopenia which giving more advantage to heparin analogues.¹⁰

This study purposed to detect the effect of fondaparinux relative to enoxaparin on patient outcomes in different clinical practices.

2. Methods

This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.¹¹

2.1. Search strategy and selection criteria

This analysis was performed using MEDLINE, EMBASE, PubMed, and Cochrane to identify all published randomized and prospective clinical trials comparing the Fondaparinux with Enoxaparin in management of thromboembolism. Relevant articles were distinguished using the following search terms: "Fondaparinux" and "Enoxaparin" sufficient information regarding the efficacy and safety outcome was available. Studies without any reference to the comparative assessment of the efficacy and safety of fondaparinux and enoxaparin. And for the studies with the same results published in different journals we selected the most complete report. Retrospective studies, reviews, animal studies, and studies lacking sufficient data were excluded. Studies were limited to human and English language. Reference lists of related articles were also reviewed. No approval from the Institutional Review Board was required.

2.2. Inclusion criteria

- 1. They were randomized and prospective clinical trials studies comparing enoxaparin with fondaparinux in patients in different studies.
- They reported adverse outcomes (bleeding, transfusions, and incidence of stroke and mortality rate) as their clinical endpoints.
- 3. They involved relevant data which could be used in this analysis.

2.3. Exclusion criteria

Studies were excluded if they satisfied the following criteria:

1. They were systematic reviews, meta-analyses, observational studies letter to editors, or case studies.

- 2. Their data were absent or deficient.
- 3. The study authors were inaccessible or did not reply if extra data from their trials were required.
- 4. Its outcomes not of interest.

2.4. Data extraction

Data extraction was undertaken from included randomized trial on the first author, year of publication, study design, sample size, setting, as well as all outcomes of interest. The primary outcome of this analysis was venous thromboembolism and pulmonary embolism or both.

Secondary outcomes were the incidence of the complication of anticoagulant drugs as their clinical endpoints Included incidence of bleeding, stroke, transfusion, and mortality rate.

2.5. Quality assessment and risk of bias

The quality of trials was evaluated using the risk of bias tool recommended by the Cochrane Collaboration.¹² We appointed an estimation of high, unclear, or low to the following items: Random sequence generation, allocation concealment, blinding, incomplete outcome data, selective reporting, and other bias. Any disparities were identified and resolved through discussion.

2.6. Statistical analysis

We conducted this analysis to pool the results of trials comparing Enoxaparin and Fondaparinux for the management of thromboembolism using Review Manager (Remikm vMan), Version 5.3. Copenhagen (The Nordic Cochrane Centre, The Cochrane Collaboration, 2014) with risk ratio (RR) and 95% confidence intervals (CI) as the analytical parameters.

Heterogeneity was assessed using the I^2 statistic. A fixed effects model or a random effects model was used during the analysis depending on the value of I^2 . A fixed effects model was recommended if an I^2 value < 50% was obtained, whereas if the I^2 value was > 50%, a random effects model was recommended.

A *P* value $\leq .05$ was considered as statistically significant whereas a *P* value $\geq .05$ was considered as statistically insignificant.

3. Results

3.1. Search results

Our search identified 266 studies through database searching and other sources. Of these articles, 90 were excluded after the removal of duplicates. Righty-seven articles were screened. Of these articles, 60 were excluded after screening, and 27 were assessed for eligibility. Ultimately, 13 randomized trials were included for analysis, with the remainder excluded as outlined in the PRISMA flow diagram (Fig. 1).

3.2. Characteristics and quality of clinical studies included in the meta-analysis

The studies included in the analysis are detailed in Table 1. Thirteen randomized studies were identified for inclusion in this study,^{11–23} involving a total of 64,350 patients. Of which 6 were orthopedic surgery,^{11–14,17,22} 5 were acute coronary syndrome,^{16,18–21} 1 was symptomatic deep venous thrombosis,¹⁵

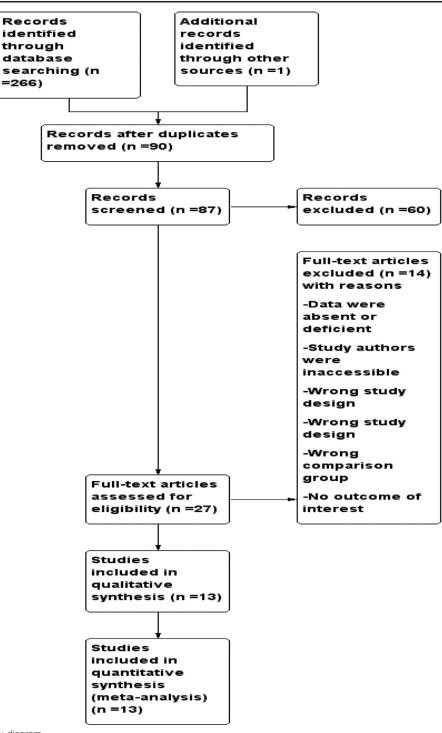


Figure 1. The PRISMA flow diagram.

and 1 was bariatric surgery. Bias risk in the thirteen trials was assessed to be generally low (Figs. 2, 3)²³

3.3. Venous Thromboembolism

The forest plot diagrams (Fig. 4) showed that that fondaparinux result in significant decrease in venous thromboembolism than

enoxaparin (R.R.=0.52 [0.47, 0.58]; 95% CI; $I^2 = 62 + \%$; P < .00001).

3.4. Pulmonary embolism

The forest plot showed that fondaparinux result in insignificant decrease in the incidence of pulmonary embolism than enoxaparin ((R.R.=1.38 [0.86, 2.21]; 95% CI; I^2 =1%; P=.18) (Fig. 5).

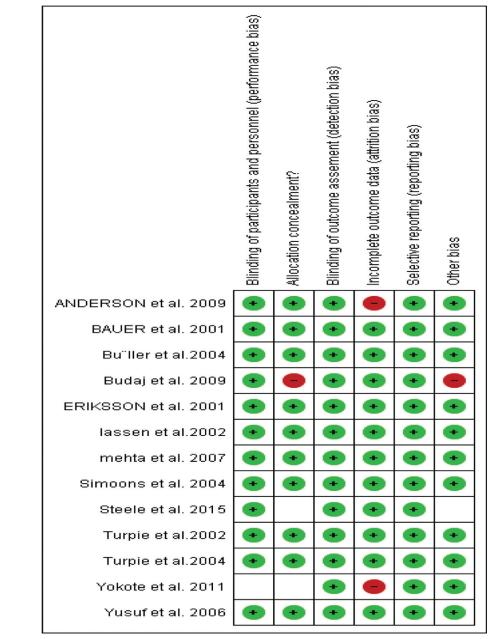


Figure 2. Risk of bias summary.

3.5. Venous Thromboembolism and pulmonary embolism

The forest plot diagrams (Fig. 6) showed that fondaparinux result in insignificant decrease in the incidence of Venous Thromboembolism pulmonary embolism than enoxaparin. (R.R.=0.55 [0.49, 0.62]; 95% CI; I^2 =100%; P<.00001).

3.6. Bleeding

The forest plot diagrams (Fig. 7) showed that fondaparinux result in significant decrease in bleeding than enoxaparin (R.R. = 0.85 [0.81, 0.88]; 95% CI; I^2 = 100%; P < .00001).

3.7. Mortality

The forest plot diagrams (Fig. 8) showed that fondaparinux result in insignificant decrease in the rate of mortality than enoxaparin (R.R.=0.91 [0.72, 1.16]; 95% CI; I^2 =0%; P=.45).

3.8. Stroke

The forest plot diagrams (Fig. 9) showed that fondaparinux result in insignificant decrease in the incidence of stroke than enoxaparin (R.R.=0.79 [0.47, 1.36]; 95% CI; I^2 =0%; P=.40).

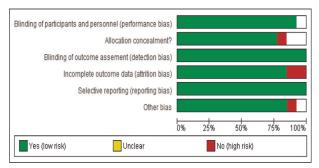


Figure 3. Risk of bias graph.

3.9. Transfusions

The forest plot diagrams (Fig. 10) showed that the two drugs result in insignificant decrease in transfusions (R.R. = 1.00 [0.96, 1.04]; 95% CI; $I^2 = 78\%$; P = .89).

4. Discussion

Venous thromboembolism (VTE) is a common complication of serious illness and is associated with considerable morbidity and mortality in hospitalized patients.^{24–25} It represents the third most common cause of vascular death, after myocardial

infarction and stroke, and is the leading preventable cause of death in hospitalized patients.²⁶ Within the United States, there are approximately 600,000 to 900,000 cases annually with an overall mortality rate ranging between 15% and 53%.²⁷ Within the ICU, patients with VTE are more likely to have a longer duration of mechanical ventilation (9 vs. 6 days; P=.02), ICU stay (17.5 vs. 9days; P=0.005), and hospitalization (51 vs. 21 days; P<0.001). These patients also have significantly higher inhospital mortality (56% vs. 38%).²⁸

Studies of patients who received DVT prophylaxis in medical ICUs suggest that the existence of PE is detected in less than 2.5% of these populations.^{29–31} Of note, a small proportion of patients will enter the ICU with undiagnosed proximal DVT. Studies of ICU patients who received DVT prophylaxis and underwent lower extremity venous compression ultrasound screening once to twice a week, and additional testing when clinically indicated, have a DVT incidence rate of 5.4% to 23.6%^{29,32,33} In autopsy studies of critically ill patients, PE was found in 7% to 27%, and clinicians did not suspect PE in about one-third of these patients.^{34–38}

According to the study outcomes, the rate of bleeding was substantially lower in the fondaparinux group than in the enoxaparin group (R.R.=0.85 [0.81, 0.88]; 95% CI; I^2 =100%; P<.00001), which is based on 11 studies. In line with our results trial which was a double blinded randomized trial which comparing fondaparinux with enoxaparin in 6238 patients who

Table 1

Characteristics of included studies

Study ID	Intervention	Dose	No. of patients	Age (yr)	Timing of injection	Type of surgery
Bauer et al. 2001 ¹¹	Fondaparinux group	2.5 mg SC once daily	517	67.5	Postoperative	Knee surgery
	Enoxaparin group	30 mg SC twice daily	517	67.5		
Eriksson et al. 2001 ¹² Fondaparinux group 2	2.5 mg SC once daily	626	76.8	Postoperative	Surgery for fracture of the upper third of the femur	
	Enoxaparin group	40 mg SC once daily	624	77.3	Preoperatively for at least five days.	
lassen et al. 2002 ¹³	Fondaparinux group	2.5 mg SC once daily	1140	66	Postoperatively	Total hip replacement Surgery
Turpie et al. 2002 ¹⁴	Enoxaparin group	40 mg SC once daily	1133	67	Preoperatively	
	Fondaparinux group	2.5 mg SC once daily	1128	67	Postoperative	Hip-replacement surgery
	Enoxaparin group	30 mg SC twice daily	1129	67		
Buller et al. 2004 ¹⁵	Fondaparinux group	7.5 mg SC once daily	1098	61		Symptomatic deep venous thrombosis
	Enoxaparin group	1 mg/kg SC twice daily	1107	61		
Simoons et al. 2004 ¹⁶	Fondaparinux group	Four doses(2.5, 4, 8, or 12 mg) SC once daily	908	62		ACS without persistent ST-segment elevation
	Enoxaparin group	1 mg/kg SC twice daily	230	60		
Turpie et al.2004 ¹⁷	Fondaparinux group	2.5 mg SC once daily	3,668	>18	Postoperative	Major orthopedic surgery
Yusuf et al. 2006 ¹⁸	Enoxaparin group	30 mg SC twice daily	3,676	>18		
	Fondaparinux group	2.5 mg SC daily	10,021	66		Acute coronary syndromes
Mehta et al. 2007 ¹⁹	Enoxaparin group	1 mg/kg SC twice daily	10,057	66		
	Fondaparinux group	2.5 mg SC once daily	3,134	64		Acute Coronary Syndromes Undergoing PCI.
	Enoxaparin group	mg/kg SC twice daily	3,104	64		
Anderson et al. 2009 ²⁰	Fondaparinux group	2.5 mg SC daily	48	69		Acute Coronary Syndromes
	Enoxaparin group	1 mg kg SC twice daily	42	71		
Budaj et al. 2009 ²¹	Fondaparinux group	2.5 mg SC once daily	10,057	60		Non-ST-elevation ACS
	Enoxaparin group	1 mg/kg SC b.i.d	10,021	60		
Yokote et al. 2011 ²²	Fondaparinux group	2.5 mg SC once daily	84	63	Postoperative	Total hip replacement
	Enoxaparin group	40 mg, 20 mg SC twice daily	83	64		
Steele et al. 2015 ²³	Fondaparinux group	5 mg SC once daily	100	19–68	Postoperative	Bariatric surgery
	Enoxaparin group	40 mg SC twice daily	98	18–65	Preoperative	

ACS, acute coronary syndrome; PCI, percutaneous coronary intervention.

	Fondaparinux Enoxaparin					Risk Ratio		Risk Ratio				
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	Year		M-H, I	ixed, 95%	% CI	
BAUER et al. 2001	45	361	101	363	12.9%	0.45 [0.33, 0.62]	2001					
ERIKSSON et al. 2001	52	626	119	624	15.2%	0.44 [0.32, 0.59]	2001					
lassen et al.2002	37	908	85	919	10.8%	0.44 [0.30, 0.64]	2002		-			
Turpie et al.2002	48	787	66	797	8.4%	0.74 [0.51, 1.05]	2002		_	•		
Buïller et al.2004	43	1098	45	1107	5.7%	0.96 [0.64, 1.45]	2004			-		
Turpie et al.2004	174	2677	363	2698	46.2%	0.48 [0.41, 0.57]	2004		-			
Yokote et al. 2011	6	84	5	83	0.6%	1.19 [0.38, 3.73]	2011					
Steele et al. 2015	2	66	2	71	0.2%	1.08 [0.16, 7.42]	2015			-		
Total (95% CI)		6607		6662	100.0%	0.52 [0.47, 0.58]			•			
Total events	407		786									
Heterogeneity: Chi ² = 18.	42, df = 7	(P = 0.0 ²	1); l² = 62ª	%				+				+
Test for overall effect: Z =	= 11.20 (P	< 0.0000	01)					0.05	0.2 Fondaparin	1 ux Enox	5 aparin	20
Incidence of venous thro	omboemb	olism.										

underwent PCI showed decreased bleeding events in fondaparinux group without any increase in mortality.³⁹ On the other hand, 6 trial (12,092 patients obtained from 447 hospitals in 41 countries around the globe) which compared fondaparinux with placebo or unfractionated heparin in patients with STEMI showed that in patients who were not undergoing PCI, were associated with a lower mortality and re-infarction without increasing stroke or bleeding events.⁴⁰ Another meta-analysis showed that In patients who were treated for ACS, fondaparinux might be a better than enoxaparin in terms of short to midterm bleeding events. This result was limited to patients with NSTEMI.⁴¹

Figure 4.

However, results from the French Registry of ST segment elevation and non-ST segment elevation MI (FAST-MI) 2010 showed a same incidence of bleeding and mortality between fondaparinux and enoxaparin.⁴² Also Almendro-Delia et al. also found in current clinical practice, the use of fondaparinux instead of enoxaparin among NSTE-ACS patients seems to provide a favourable net clinical benefit.⁴³

In our study, reported data on the in-hospital mortality. There was no statistically significant difference in the overall mortality between two groups (R.R.=0.91 [0.72, 1.16]; 95% CI; I^2 =0%; P=.45). Another meta-analysis that was conducted to report the effect on mortality considered LMWH and placebo in the same

group compared with fondaparinux⁴⁴ and reported a statisticallynon-significant 21% reduction in the odds associated with fondaparinux.

But on the line of this study, a total of 8 studies, including, showed that that fondaparinux result in significant decrease in venous thromboembolism than Correlation with our study meta-analysis done by Min Hur et al.,45 comparing 6 anticoagulants used in the approved dose to prevent VTE after total hip or knee arthroplasty. Our network-pooled estimates of outcomes revealed that fondaparinux, may has a higher efficacy of reducing VTE than enoxaparin, but fondaparinux and was associated with a higher risk of major/CRNM bleeding than enoxaparin after hip and knee arthroplasty. Another, metaanalysis by Wen-Jun Dong et al.,46 revealed that fondaparinux had a superior efficacy compared to enoxaparin in the prevention of VTE after total hip replacement in terms of total VTE and DVT, also systematic review and meta-analysis done by Arum Kumar et al. Fondapar-inux was associated with a superior efficacy in terms of reduction of venous thromboembolism in this meta-analysis. However, it was also associated with increased odds of major bleeding.⁴⁷

On the other hand, study which done by Büller et al. showed that subcutaneous fondaparinux was less effective (not inferior) and safe when compared by twice-daily, body weight-adjusted

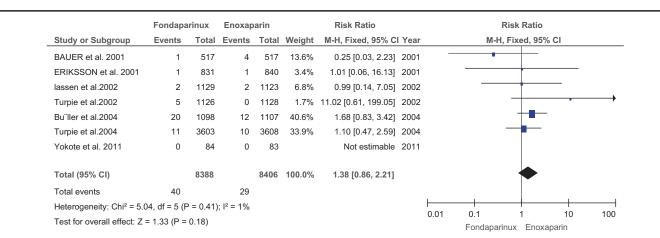


Figure 5. Incidence of pulmonary embolism.

	Fondapa	rinux	Enoxap	arin		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	Year	M-H, Fixed, 95% CI
7.1.1 pulmonary emboli	sm							
BAUER et al. 2001	1	517	4	517	0.5%	0.25 [0.03, 2.23]	2001	
ERIKSSON et al. 2001	1	831	1	840	0.1%	1.01 [0.06, 16.13]	2001	
lassen et al.2002	2	1129	2	1123	0.2%	0.99 [0.14, 7.05]	2002	
Turpie et al.2002	5	1126	0	1128	0.1%	11.02 [0.61, 199.05]	2002	
Buïller et al.2004	20	1098	12	1107	1.5%	1.68 [0.83, 3.42]	2004	+
Turpie et al.2004	11	3603	10	3608	1.2%	1.10 [0.47, 2.59]	2004	
Yokote et al. 2011	0	84	0	83		Not estimable	2011	
Subtotal (95% CI)		8388		8406	3.6%	1.38 [0.86, 2.21]		•
Total events	40		29					
Heterogeneity: Chi ² = 5.0	4, df = 5 (P	= 0.41)	; I² = 1%					
Test for overall effect: Z =	= 1.33 (P = 0	0.18)						
7.1.2 Venous thromboe	mbolism							
BAUER et al. 2001	45	361	101	363	12.4%	0.45 [0.33, 0.62]	2001	
ERIKSSON et al. 2001	52	626	119	624	14.7%	0.44 [0.32, 0.59]	2001	-
lassen et al.2002	37	908	85	919	10.4%	0.44 [0.30, 0.64]	2002	
Turpie et al.2002	48	787	66	797	8.1%	0.74 [0.51, 1.05]	2002	
Bu"ller et al.2004	43	1098	45	1107	5.5%	0.96 [0.64, 1.45]	2004	- + -
Turpie et al.2004	174	2677	363	2698	44.5%	0.48 [0.41, 0.57]	2004	=
Yokote et al. 2011	6	84	5	83	0.6%	1.19 [0.38, 3.73]	2011	
Steele et al. 2015	2	66	2	71	0.2%	1.08 [0.16, 7.42]	2015	
Subtotal (95% CI)		6607		6662	96.4%	0.52 [0.47, 0.58]		♦
Total events	407		786					
Heterogeneity: Chi ² = 18.	42, df = 7 (l	P = 0.01	l); l² = 62%	6				
Test for overall effect: Z =	= 11.20 (P <	0.0000	1)					
Total (95% CI)		14995		15068	100.0%	0.55 [0.49, 0.62]		•
Total events	447		815					
Heterogeneity: Chi ² = 36.	45, df = 13	(P = 0.0	0005); I ² =	64%				
Test for overall effect: Z =	= 10.56 (P <	0.0000	1)					0.01 0.1 1 10 1 Equation (control)
	nces: Chi² =							Favours [experimental] Favours [control]

enoxaparin in the initial treatment of patients with symptomatic deep venous thrombosis. $^{\rm 48}$

Our meta-analysis has some limitations. First, all trials were performed by drug sponsors that contributed to data collection and statistical analysis. Many studies did not provide the method of random sequence generation and details of blinding of participants and personnel. Second, potential sources of heterogeneity in study design preclude a firm conclusion on

	Fondapa	arinux	Enoxa	barin		Risk Ratio			Risk	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	Year		M-H, Fixe	d, 95% Cl	
BAUER et al. 2001	2	517	1	517	0.1%	2.00 [0.18, 21.99]	2001				
ERIKSSON et al. 2001	3	831	2	842	0.1%	1.52 [0.25, 9.07]	2001				_
Turpie et al.2002	2	1128	2	1129	0.1%	1.00 [0.14, 7.09]	2002				
lassen et al.2002	5	1140	3	1133	0.2%	1.66 [0.40, 6.91]	2002			· · · · ·	
Buïller et al.2004	1091	1098	1101	1107	61.3%	1.00 [0.99, 1.01]	2004				
Simoons et al. 2004	0	229	0	230		Not estimable	2004				
Yusuf et al. 2006	313	10057	494	10021	27.6%	0.63 [0.55, 0.73]	2006		•		
mehta et al. 2007	88	3105	166	3072	9.3%	0.52 [0.41, 0.68]	2007				
Budaj et al. 2009	7	10057	22	10021	1.2%	0.32 [0.14, 0.74]	2009				
Yokote et al. 2011	0	85	0	85		Not estimable	2011				
Steele et al. 2015	0	100	1	98	0.1%	0.33 [0.01, 7.92]	2015	←			-
Total (95% CI)		28347		28255	100.0%	0.85 [0.81, 0.88]			•		
Total events	1511		1792								
Heterogeneity: Chi ² = 259	91.45, df =	8 (P < 0	.00001);	² = 100 ⁹	%					F	20
Test for overall effect: Z =	= 8.34 (P <	0.00001)					0.05	0.2 1 Fondaparinux	5 Enoxaparin	20

Figure 7. Incidence of bleeding.

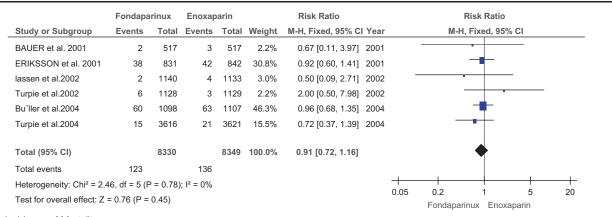


Figure 8. Incidence of Mortality.

	Fondapa	rinux	Enoxap	arin		Risk Ratio	Risk Ratio				
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI Year		M-H	, Fixed, 95	% CI	
Yusuf et al. 2006	18	3135	22	3104	73.5%	0.81 [0.44, 1.51] 2006		-			
mehta et al. 2007	6	1414	8	1420	26.5%	0.75 [0.26, 2.17] 2007					
Total (95% CI)		4549		4524	100.0%	0.79 [0.47, 1.36]					
Total events	24		30								
Heterogeneity: Chi ² =	0.01, df = 1	(P = 0.9	91); I² = 09	%							-+
Test for overall effect:		0.05	0.2 Fondapar	1 inux Enox	5 aparin	20					
ncidence of stroke											

Figure 9. Incidence of stroke.

	Fondapa	arinux	Enoxap	oarin		Risk Ratio	Risk Ratio					
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	Year		M-H	, Fixed, 9	5% CI	
BAUER et al. 2001	222	517	197	517	8.6%	1.13 [0.97, 1.31]	2001			-		
ERIKSSON et al. 2001	421	831	422	842	18.3%	1.01 [0.92, 1.11]	2001			†		
lassen et al.2002	714	1140	690	1133	30.2%	1.03 [0.96, 1.10]	2002			•		
Turpie et al.2002	593	1128	555	1129	24.2%	1.07 [0.99, 1.16]	2002			•		
Budaj et al. 2009	336	10057	429	10021	18.7%	0.78 [0.68, 0.90]	2009			*		
Total (95% CI)		13673		13642	100.0%	1.00 [0.96, 1.04]						
Total events	2286		2293									
Heterogeneity: Chi ² = 18.	19, df = 4	(P = 0.00	01); I ² = 7	8%				+		<u> </u>		-+
Test for overall effect: Z =	= 0.13 (P =	0.89)						0.05	0.2 Fondapar	1 inux Enc	5 xaparin	20

Figure 10. Incidence of transfusions.

our study. The timing of anticoagulant administration, definitions of primary efficacy outcomes, follow-up period, and use of compression stockings included and studies in our metaanalysis were from different countries. Thus, we reported pooled analysis of these studies, which were from different clinical settings, that might have impacted the results can be a source of heterogeneity.

5. Conclusion

Fondaparinux was associated with noteworthy reduction in the incidence of bleeding time and the incidence of venous thromboembolism, however results showed that both anticoagulants to have similar mortality and stroke rates and the same transfusion and pulmonary embolism rate.

References

- Espelund M, Grevstad U, Jaeger P, et al. Adductor canal blockade for moderate to severe pain after arthroscopic knee surgery: A randomized controlled trial. *Acta Anaesthesiol Scand* 2014;58:1220–1227.
- [2] Carr DB, Goudas LC. Acute pain. Lancet 1999;353:2051-2058.
- [3] Beitland S, Sandven I, Kjaervik LK, Sandset PM, Sunde K, Eken T. Thromboprophylaxis with low molecular weight heparin versus unfractionated heparin in intensive care patients: A systematic review with meta-analysis and trial sequential analysis. *Intensive Care Med* 2015;41:1209–1219.
- [4] Hill J, Treasure T. Reducing the risk of venous thromboembolism 5 (deep vein thrombosis and pulmonary embolism) in patients having surgery: Summary of NICE guidance. BMJ 2007;334:1053–1055.
- [5] Paolucci F, Clavies MC, Donat F, Necciari J. Fondaparinux sodium mechanism of action: Identification of specific binding to purified and human plasma-derived proteins. *Clin Pharmacokinet* 2002;41(Suppl. 2):11–18.

- [6] Beguin S, Choay J, Hemker HC. The action of a synthetic pentasaccharide on thrombin generation in whole plasma. *Thromb Haemost* 1989;61(3):397–401.
- [7] Hirsh J. Heparin. N Engl JMed 1991;324:1565-1574.
- [8] Mulloy B, Hogwood J, Gray E, Lever R, Page CP. Pharmacology of heparin and related drugs. *Pharmacol Rev* 2016;68(1):76–141.
- [9] Seaman S, Nelson A, Noble S. Cancer-associated thrombosis, lowmolecular-weight heparin, and the patient experience: A qualitative study. *Patient Prefer Adherence* 2014;8:453–461.
- [10] Aster RH. Heparin-induced thrombocytopenia and thrombosis. N Engl J Med 1995;332(20):1374–1376.
- [11] Moher D, Liberati A, Tetzlaff J, Altman DG. The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. *PLoS Med* 2009;6:e1000097.
- [12] Higgins JPT, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration's tool for assessing the risk of bias in randomized trials. *BMJ* 2011;343:d5928.
- [13] Bauer KA, Eriksson BI, Lassen MR, et al. Fondaparinux compared with Enoxaparin for the prevention of venous thromboembolism after elective major knee surgery. N Engl J Med 2001;345(18):1305– 1310.
- [14] Eriksson BI, Bauer KA, Lassen MR, Alexander GG. Fondaparinux compared with Enoxaparin for the prevention of venous thromboenbolism after hip fracture surgery. N Engl J Med 2001;345(18):1298–3104.
- [15] Michael RL, Bauer KA, Eriksson BI, Turpie AGG. Postoperative fondaparinux versus preoperative enoxaparin for prevention of venous thromboembolism in elective hip replacement surgery: A randomised double-blind comparison. *Lancet* 2002;359:1715–1720.
- [16] Turpie AGG, Bauer KA, Eriksson BI, Lassen MR. Postoperative fondaparinux versus postoperative enoxaparin for prevention of venous thromboembolism after elective hip replacement surgery: A randomised double-blind trial. *Lancet* 2002;359:1721–1726.
- [17] Büller HR, Davidson BL, Decousus H, et al. Fondaparinux or enoxaparin for the initial treatment of symptomatic deep venous thrombosis: A randomized trial. *Ann Intern Med* 2004;140:867–873.
- [18] Simoons ML, Bobbink IWG, Boland FJ, et al. A dose-finding study of fondaparinux in patients with non-ST-segment elevation acute coronary syndromes the Pentasaccharide in Unstable Angina (PENTUA) Study. J Am Coll Cardiol 2004;43(12). doi: 10.1016/j.jacc.2004.02.051.
- [19] Turpie AGG, Bauer KA, Eriksson BI, Lassen MR. Superiority of fondaparinux over enoxaparin in preventing venous thromboembolism in major orthopedic surgery using different efficacy end points. *Chest* 2004;126(2):501–508.
- [20] Yusuf S, Mehta SR, et al. Fifth Organization to Assess Strategies in Acute Ischemic Syndromes InvestigatorsComparison of fondaparinux and enoxaparin in acute coronary syndromes. N Engl J Med 2006;354:1464–1476.
- [21] Mehta SR, Granger CB, Eikelboom JW, et al. Efficacy and safety of fondaparinux versus enoxaparin in patients with acute coronary syndromes undergoing percutaneous coronary intervention results from the OASIS-5 trial. J Am Coll Cardiol 2007;50(18):1742–1751.
- [22] Anderson JAM, Hirsh J, Yusuf S, et al. Comparison of the anticoagulant intensities of fondaparinux and enoxaparin in the organization to assess strategies in acute ischemic syndromes (OASIS)-5 trial. J Thromb Haemost 2010;8:243–249.
- [23] Budaj A, Eikelboom JW, Mehta SR, et al. Improving clinical outcomes by reducing bleeding in patients with non-ST-elevation acute coronary syndromes. *Eur Heart J* 2009;30:655–661.
- [24] Yokote R, Matsubara M, Hirasawa N, Hagio S, Ishii K, Takata C. Is routine chemical thromboprophylaxis after total hip replacement really necessary in a Japanese population? J Bone Joint Surg [Br] 2011;93 (2):251–256.
- [25] Steele KE, Canner J, Prokopowicz G, et al. The EFFORT trial: Preoperative enoxaparin versus postoperative fondaparinux for thromboprophylaxis in bariatric surgical patients: A randomized double-blind pilot trial. Surg Obes Relat Dis 2015;11(3):672–683.
- [26] Lapner ST, Kearon C. Diagnosis and management of pulmonary embolism. Br Med J 2013;346:f75.
- [27] Kucher N, Rossi E, et al. Massive pulmonary embolism. *Circulation* 2006;113:577–582.

- [28] Cook DJ, Crowther M, Meade M, et al. Deep venous thrombosis in medical-surgical ICU patients: Prevalence, incidence, and risk factors [abstract]. Crit Care 2003;7(Suppl. 2):S54.
- [29] Cook D, Meade M, Guyatt G, Walter S, Heels-Ansdell D, Warkentin TE, et al. Dalteparin versus unfractionated heparin in critically ill patients. N Engl J Med 2011;364:1305–1314.
- [30] Patel R, Cook DJ, Meade MO, et al. Burden of illness in venous ThromboEmbolism in Critical care (BITEC) Study Investigators, Canadian Critical Care Trials Group. Burden of illness in venous thromboembolism in critical care: A multicenter observational study. J Crit Care 2005;20:341–347.
- [31] Bahloul M, Chaari A, Kallel H, et al. Pulmonary embolism in intensive care unit: Predictive factors, clinical manifestations and outcome. *Ann Thorac Med* 2010;5:97–103.
- [32] Ibrahim EH, Iregui M, Prentice D, Sherman G, Kollef MH, Shannon W. Deep vein thrombosis during prolonged mechanical ventilation despite prophylaxis. *Crit Care Med* 2002;30:771–774.
- [33] Cook D, Crowther M, Meade M, et al. Deep venous thrombosis in medical-surgical critically ill patients: prevalence, incidence, and risk factors. *Crit Care Med* 2005;33:1565–1571.
- [34] McLeod AG, Geerts W. Venous thromboembolism prophylaxis in critically ill patients. Crit Care Clin 2011;27:765–780.
- [35] Neuhaus A, Bentz RR, Weg JG. Pulmonary embolism in respiratory failure. Chest 1978;73:460–465.
- [36] Moser KM, LeMoine JR. Is embolic risk conditioned by location of deep venous thrombosis? Ann Intern Med 1981;94:439–444.
- [37] Pingleton SK, Bone RC, Pingleton WW, Ruth WE. Prevention of pulmonary emboli in a respiratory intensive care unit. Efficacy of lowdose heparin. *Chest* 1981;79:647–650.
- [38] Cullen DJ, Nemeskal AR. The autopsy incidence of acute pulmonary embolism in critically ill surgical patients. *Intensive Care Med* 1986;12:399–403.
- [39] Mehta SR, Granger CB, Eikelboom JW, et al. Efficacy and safety of fondaparinux versus enoxaparin in patients with acute coronary syndromes undergoing percutaneous coronary intervention: results from the OASIS-5 trial. J Am Coll Cardiol 2007;50(18):1742–1751.
- [40] Yusuf S, Mehta SR, Chrolavicius S, et al. Effects of fondaparinux on mortality and reinfarction in patients with acute ST-segment elevation myocardial infarction: The OASIS-6 randomized trial. JAMA 2006;295 (13):1519–1530.
- [41] Bundhun PK, Shaik M, Yuan J. Choosing between Enoxaparin and Fondaparinux for the management of patients with acute coronary syndrome: A systematic review and meta-analysis. BMC Cardiovasc Disord 2017;17:116.
- [42] Puymirat E, Schiele F, Ennezat PV, et al. Impact of fondaparinux versus enoxaparin on in-hospital bleeding and 1-year death in non-STsegmentelevation myocardial infarction. FAST-MI (French Registry of acute ST-elevation and non-ST-elevation myocardial infarction) 2010. Eur Heart J Acute Cardiovasc Care 2015;4(3):211–219.
- [43] Almendro-Delia M, Izquierdo-Bajo Á, Madrona-Jiménez L, et al. Fondaparinux versus enoxaparin in the contemporary management of non-ST-elevation acute coronary syndromes. Insights from a multicenter registry. Int J Cardiol 2021;332:29–34.
- [44] Eikelboom JW. Effect of fondaparinux 2.5 mg once daily on mortality: A metaanalysis of phase III randomized trials of venous thromboembolism prevention. *Eur Heart J Suppl* 2008;10:C8–C13.
- [45] Hur M, Park SK, Koo CH, et al. Comparative efficacy and safety of anticoagulants for prevention of venous thromboembolism after hip and knee arthroplasty. *Acta Orthopaedica* 2017;88(6):634–641.
- [46] Dong WJ, Qian HJ, Qian Y, Zhou L, Hu SL. Fondaparinux vs. enoxaparin for the prevention of venous thromboembolism after total hip replacement: A meta-analysis. *Exp Ther Med* 2016;12:969–974.
- [47] Kumar A, Talwar A, Farley J, et al. Fondaparinux sodium compared with low-molecular-weight heparins for perioperative surgical thrombopro-phylaxis: A systematic review and meta-analysis. J Am Heart Assoc 2019;8(10):e012184.
- [48] Büller HR, Davidson BL, Decousus H, et al. Matisse Investigators. Fondaparinux or enoxaparin for the initial treatment of symptomatic deep venous thrombosis: A randomized trial. *Ann Intern Med* 2004;140 (11):867–873.